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SUMMARY

Based on assumpbtions which have led to the best agreement between
theory and test data on inelastic buckling of flat plates, a general set
of equilibrium differential equations for the plastic buckling of cylin-
ders has been derived. These equations have been used to obtaln solu-
tions for the compressive and torsionsl buckling of long cylinders in
the yleld region.

Test data are presented which indicate satisfactory agreement with
the theoretical plesticity-reduction factors in most cases. Where a
difference in results exists, test data are in substantially better agree-
ment with the results obtalned by use of the maximum-shear law rather
then the octahedral-shear law to transform axiasl stress-strain data to
shear stress-straln deta.

INTRODUCTION

Inelastic Compressive Buckling of Flat Plates

The state of knowledge up to 193_6 concerning inelastlc buckling of
plates and shells has been summarized by Timoshenko in reference 1. The
mein efforts were concerned with ettempts to modify the various bending-
moment terms of the equilibrium differentisl equstions by the use of
suitable plasticity coefficients determined from experimental deta on
columns. Although such semiempirical efforts met with a reasonsble degree
of success, the theoreticel determination of plasticity-reduction factors
for flat plates has been achieved within recent years as the result of
the development of inelastic-buckling theory. Because such developments
are recent and form the background for the inelastic-buckling theory for
shells developed herein, the following discussion concerning the assump-
tions and results of the various theories is presented in some detall.

Different investigators have used differing assumptions in the
development of their theories. The major assumptions underlying each
of these ‘theories are given in the following table.
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Investigator Stress-strain law |Plasticity law|Buckling model

Biljlaaxrd Incremental and Octahedral No strain

(ref. 2) deformation types, shear reversal

v instantaneous

Ilyushin Deformation type, - Octahedral Strain

(ref. 3) "v =0.5 shear reversal
Handelman and Prager| Incremental type, Octshedral Strain

(ref. k) v instdntaneous shear reversal
Stowell : Deformetion type, Octahedral No straln

(refs. 5 and 6) v = 0.5 shear reverssl

Historically, Bijlsard (ref. 2) appears to have been the first to
arrive at satisfactory theoreticel solutions for inelastic-buckling
theories. His work is the most comprehensive of all those considered
in that he considers both incremental and deformation theories and con-
cludes that the deformation type 1s correct since it leads to lower
inelastic buckling loads than thoge obtained from incremental theories.
His work was first published in 1937. That paper and later publications
include solutions to many importent inelastic-buckling problems. How-
ever, this work appesrs to have remained unknown to most of the later
investigators.

Ilyushin (ref. 3) briefly referred to Bijlaard's work and then pro-
ceeded to derive the basic differential equation for inelastic buckling
of flat plates according to the strain-reversal model. The derivation
of this equation is rather elegant and wes used by Stowell (ref. 5), who,
however, used the no-straln-reversal model. The differential equation
obtained by Bijlasrd reduces to that derived by Stowell by setting
v = 1/2 in the former. Handelmen and Prager (ref. 4), during this time,
obtained solutions to several inelastic-buckling problems by use of
incremental theory. Test date on compressed f£langes and plates indicate
that the results of incremental theories are definitely unconservative
regardless of the buckling model, whereas deformation-type theories are
in relatively good agreement.

The problem of plastic buckling has also been the subject of much
experimental research. The use of the secant-modulus-reduction factor
was first proposed for plates under compressive loads by Gerard (ref. T
on the basis of tests on Z- and channel sections. Later, Stowell (ref. 5)
proved theoretically that use of the secant modulus is correct for hinged
flanges and that for elastically restrained flanges and plates the
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plasticity-reduction factor includes a function of the tangent modulus

in addition to the secant modulus. For long columns, the factor depends
only upon the tangent modulus. The plasticity-reduction factors proposed
by Stowell for simply supported flanges and plates have received excellent
experimental confirmstion (refs. 8 to 10) and it has been well known for
some 50 years that the tengent modulus is in good agreement with test data
for columns. Thus, the theoretical plastic-buckling factors for plates
under campressive loads appear to be well substantiated by rather precise
experimental data.

Tnelastic Shear Buckling of Flat Plates

In contrast with plastic compressive buckling, shear buckling of
plates appears to be on less substantial ground. As the result of a
geries of tests on long 2024-0 aluminum-alloy plates under shear, Gerard
(ref. 11) proposed use of the shear secant modulus as the plesticity-
reduction factor for this case. The shear secant modulus is determined
from a shear stress-strain curve, which, according to reference 11, is
to be derived from an axial stress-strain curve on the basis of the
maximm-shear plasticity law. Stowell (ref. 6) derived a theoretical
plasticity-reduction factor for shear which has virtually the same numeri-
cal value for all conditions of elastic restraint between simple support
and clamped.

In comparing the test deta of reference 11 with the theoretical
reduction factor, Stowell used a shear stress-strain curve derived by
the octahedral-shear plasticity law. The shear plastic-buckling test
date were found to lie censistently below the theoreticel factor. Fur-
thermore, Stowell attempted to explain the asgreement between the shear
secant-modulus method proposed in reference 11 and the test date therein
on the basis that the stress-strain curve for 2024-0 aluminum alloy can
be well epproximeted by a power law.

Recently, in a series of tests on long, square, 201L4-T6 aluminum-
alloy tubes in torsion, Peters (ref. 10) presented a new set of test
dsta on plastic shear buckling. Although the stress-strain curve of
this materisl cannot be adequetely approximated by a power lew, excellent
sgreement was found to exist between the new test date and the shear
secant-modulus method proposed in reference 11. The theoretical factors
of Stowell (ref. 6) and Bijlaard (ref. 2) were found to be consistently
higher than the test data by an order of approximately 15 percent in the
buckling stress.

In summsrization, then, the assumptions which lead to the best agree-
ment between theory and test data on inelastic buckling of sluminum-alloy
flat plates under compression loading are deformation-type stress-strain
laws, stress and strain intensities defined by the octahedral-shear law,
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and the no-straln-reversal model of inelastic buckling. Although there
may be theoretical objections to deformation theories as a class and the
use of a no-strain-reversal model in conjunction with classical stability
concepts, test data do suggest the use of results obtained from a theory
based on these assumptlions.

For the inelastic buckling of f£flat plates under shear loeding,
plastic-buckling theory and the test data are not in good agreement.
The principel difficulty appears ‘to lie in the use of the octahedral-
shear law to transform stress-straln data under axial loading to shear
stress-strain data. This situation is discussed further herein in con-
nection with results obtained for torsionsl buckling of cylinders.

Inelastic Buckling of Cylinders

Timoshenko (ref. 1) has presented some attempts to describe the
inelastic buckling of a cylinder under axiel compressive forces subjected
to axisymmetric buckling. These resulbts are based on the intuitive use
of the reduced modulus in place of the elastic modulus where the latter
appears in the elastic-buckling-stress equation.

Bijlaard (ref. 12), in an extension of his theory for inelastic
buekiing of flat plates, has considered the inelastlc buckling of a
cylinder subject to compression. Both the exisymmetric and the cilrcum-
ferential modes of buckling were considered in this analysis. The
results are discussed in subsequent sections of this report.

In this paper, a general set of equilibrium differential equations
for the plastic buckling of cylinders is derived. This set of equations
is perfectly general and applies to any loading system leading to buckling.
In particular, solutions are obtained for compressive and torsional buck-~
ling of long cylinders in the yield region.

The plasticity terms appearing in the equilibrium equations depend
upon the cholce of the buckling model. For the no-strain-reversal model,
vwhich is used in this analysis, the fact that the axial load must increase
slightly during buckling in order that no unloading.should occur presents
a mathematical difficulty when using classicel stability concepts in which
the loading remains constant during buckling. This difficulty is dis-
cussed and an attempt to remove 1t 1s presented.

This investigation was conducted at New York University under the

sponsorship and with the financial assistance of the Nationel Advisory
Camittee for Aeronautics.
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SYMBOLS

plasticity coefficients defined by equations (A13)

axlsl rigidity, Est/ (1 - v2)

plate width

bending rigidity, Est3/12(1 -2
diameter
modulus of elasticity

secant modulus

tangent modulus
strain intensity defined by equation (A2)
force

shear elastic modulus

shear secant modulus

shear buckling coefficient

length of cylinder

bending moment per unit width

number of longitudinal half wave lengths
loading per unit width

number of circumferential wave lengths
external pressure

radius of cylinder

thickness
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u,v,w displacements
X,0,z coordinates
@ = (3/ 012)[1 - (Et/Es):]
B = t2/1232

Y4 shear strain
€ axial strain

plasticity-reduction factor

A=1/n

v Poisson's ratio

Ve elastic value of Poisson's ratio, equal to 0.3
o] axial stress

o3 stress intensity defined by equation (Al)

T shear stress

¢ = ""cr(l - Vz)/ By

X curvabure

Vl" | operstor, [(32/ sz) + (32/ R2392)] ¢
& = ()

() veriations which arise during buckling, such as M' and N*
Subscripts:

c compression

cr critical

e elastic
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£ failing
8 shear
X, ¥, Xy coordinate orientetion for M, N, o, and €

1,2,3 variations which arise during buckling in € and ¥

EQUILIERIUM EQUATIONS

The plan followed in this report is to present the theoretical deri-
vations in sppendixes. The theoretical results, comparisons with test
dete, and a discussion of the significance of these results appear in
the mein body of the report.

In appendix A, the assumptions of the plasticity theory used are
discussed and the stress and strain intensities are defined according
to the octahedral-shear law. Consliderations involved in the buckling
model are then considered end the incremental forces and moments which
arise durlng buckling are presented based on the no-strain-reversal model.

In appendix B, Donnell’'s (ref. 13) simplified strain-displacement
and equilibrium equations derived originally for cylinder elastic-buckling
problems are combined with the incremental force and moment relations of
appendix A. In this menner, a complete set of equilibrium differential
equations is obtained for use in the solution of cylinder plastic-buckling
problems. Included in appendix B is an abttempt to remove the difficulty
of using equilibrium equations based on classicel stability concepts for
inelastic~buckling problems in which the no-strain-reversal model requires
that the load must increase slightly during buckling.

AXTAT, COMPRESSIVE BUCKLING OF A.LONG CYLINDER

Solution of Problem

In appendix C, the axisymmetric buckling of a long cylinder under
axial compression is considered. The critical stress obtained by use of
the equilibrium equations derived in appendix B has the following form:

Opp = [3(1 - va)] -1/ QEB(Et/ES)l/ % /R (1)
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As in the inelsstic buckling of flat plates, all effects of exceeding
the proportional limit are incorporated in a plasticity-reduction factor
defined as follows:

e = "cr/ ("cr) e (2)

The solution for the elastic case is obtained by substitubing
Eg =E, EtfEs =1, and v = ve in eguation (1):

(o = Bt - 2] metm < 0.6 )

By use of equation (2),

Ly 1/2EB 1/2
"lc 1 - V2 f(EbE_B' ()'I')

In general, therefore,
Ooy = O.sncE(t/R) (5)

Bijlaard (ref. 12) has previously obtained resulis equivalent to
equations (1) and (%). His results are more exact, in fact, since the
variation of Poisson's ratio in the inelsstic range is included directly
in the analysis. In the interests of simplicity, the.present analysis
utilizes the artificial device of teking v = 1/2 in both the elastic
and plastic reglons and then employs an approximate correction (see
eq. (C15)) which yields exact solutions for the elastic and plastic
ranges as limits. This method follows a suggestion of Stowell (ref. 5).

The purpose here in obtalning this solution was to present a unifiled
approach to the compressive and torsional buckling of cylinders from the
set of equilibrium equations derived in appendix B. Furthermore, equa-
tions (1) and (4) serve as a basis for interpreting test data presented
herein on the inelastic buckling of cylinders.

In addition to the axisymmetric case considered here, Bijleard
(ref. 12) has also considered the circumferential buckling mode of a
cylinder under axial compression. As in the elastic case, the critical
stresses obtained for both buckling modes are essentially the same.
Bijleard hes pointed out that for mild steel the circumferential mode
mey lead to a slightly higher buckling load than the axisymmetric mode.
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It would be a relatively simple metter to solve the circumferential
buckling case by use of the equilibrium equations of appendix B. However,
in view of. Bijlaard's results and the fact that the axisymmetric mode is
often observed in tests on round cylinders which buckle plastically, the
solution for this buckling mode was not pursued.

Test Data

Osgood (ref. 14) and Moore and Holt (ref. 15) have presented test
data on the falling strength of drawn circular tubes under axial com-
pression. Osgood tested 2017-T4 alumimm-slloy tubes for which compres-
slve stress-strain curves were glven and also chrame-molybdenum tubes
for which, unfortunately, neither the compressive stress-strain curves
nor compressive yleld stresses were obtained. It is interesting to note
‘thet photographs of the test specimens indicate the appearance of axisym-
metric buckling in some cases. Moore and Holt tested 6061-T6 aluminum-
alloy tubes for which the compressive yleld stresses were given although
not the compressive stress-strain curves. A typical compressive stress-
strain curve for this material, with a corresponding yileld stress, was
taken from reference 16 for correlation purposes.

To reduce the experimental date for comparison with theory, the
experimental failing strength was divided by the criticel elastic stress
(eq. (3)) to determine the experimentsl plasticity-reduction factors
given in table 1. The theoretical velue of 1, was determined in each

case by use of +the pertinent stress-strain data according to equation (4).
For Poisson's ratlio, the following values were used:

Ve = 0.3 (6)

v =0.5 - (EB/E)(O.5 - ve)

The relation for the variation in Poisson's ratio in the yield region
hes been shown to apply to isotrople, plasticelly incompressible solids
by Gerard and Wildhorn (ref. 17).

The theoreticel and experimentel values of 17, as & function of

the inelastic-compressive-buckling stress are plotted in figure 1. For
the limited range of test date on 2017-T4 and 6061-T6 aluminum-slloy
tubes it can be observed thet good agreement is obtained. This is remark-
gble in view of the fact that while it tends to confirm the rélation for
the plasticity-reduction factor (eq. (4)) it also confirms the classical

© small-~deflection stability theory for compressed cylinders.




10 NACA TN 3726

TORSIONAYL. BUCKLING OF A LONG CYLINDER

Cylinders of Extreme Iength

In appendix D, the torsionsl buckling of a long cylinder is con-
sidered. If the cylinder is of sufficient length, the boundary condi-
tions at the ends have negligible influence and two-lobe buckling occurs.
The critical stress for this case obtained by use of the equilibrium
equations of appendix B has the following form:

-3/4 3/2
Tor = 0.272(1 - V2) /Es(t/R) f (1)
In the elastic case, equation (7) becomes
-3 /% 3/2
(ter), = 0.272(1 - v,2) 2 E(t/R) / (8)

Donnell (ref. 13) has shown that equation (8) applies for

(®E)>- ®)

vhere a = 42 for simply supported ends and a = 60 for clamped ends. °
By use of the equivalent of equation (2) for the torsionsl buckling case

L, 2
- ve
g = (1—_‘?) EgfE (10)
In general, therefore,
-3/
Top = 0.272(1 - ve2) 2 nsE(t/R)3/2 (11)

The plasticity-reduction factor depends primerily upon the secant
modulus, which has been found to be the case whenever buckling occurs as
a twisting action. This has been previously observed for compressive
buckling of hinged flanges where buckling occurs as a twisting action
and the plasticity-reduction factor depends primarily upon the secant
modulus.
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In appendix A, the secant modulus is defined as

Eg = oyfey (12)

It the shear stress-strain curve is known (this can be relatively simply
obtained by torsion tests on tubes although no such direct .experimental
procedure exists for obtalning these data for flat plates), then the
respective stress and strain intensities according to equations (A1)

and (A2) are as follows:

o = (3)%/2 ’ (13)
ey = (3)°1/2 (14)

By use of equation (12)
= 3t/y (15)

Since t/y = Gy, from equation (15)

= Eg/3 (16)

Therefore, equation (10) can be interpreted as

3/4
Mg =\—% T
8 \1-+7 y
in cases in which the shear stress-strain curve is availabie.

If, on the other hand, shear stress-strain data msy not be avail-
able, then it is possible to construct a shear stress-strain curve from
simple tension and compression stress-strain data by use of either the
octahedral- or the maximum-sghesr law. As indicated in reference 11 for
meterials which are anisotropic as a result of straightening (Bauschinger
effect) , 1t is probably best to utilize an exial stress-strain curve
vhich 1s an average of the tension and compression curves each at 45°
with the direction of the applied shear. If the axial stress in the
simple axial test is oy, then the stress and strain intensities according

to the octahedrel-shear and maximm-shesr lawsg are
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0y = Ox
(18)
€1 = €
Thus, in both cases,
Eg = Ux/ex (19)

However, the shear stresses corresponding to o, are different.
For octahedral shear
T = (3)—]'/20x (20)
and for maximum shear
T = °'x~/2 (21)

Thus, the velues of Eg and therefore 714 for a given value of oy

correspond to a Jower value of T for the maximum-shear law as compared
with that of the octehedral-shear law.

Cylinders of Moderate Iength

A solution for the inelastic buckling of cylinders of moderate
length, in which case the boundery conditions have a decided influence
upon the buckling stress, has not been obtained herein. However, the
elastic solution is known and has been given in the following form by
Batdorf (ref. 18):

5/% 1/2

Tor = O.THTE(L/R)” " (R/2) (22)

for 50t/R < (1/R)2 < 1O0R/%.
For short cylinders defined approximately by 12/ Rt < 1, the flat-

plate solution
T 1o(1 - v 2)\e
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applies where

T = Gg G (24)

The plasticity-reduction factor for this case has been proposed by Gerard
(ref. 11) and is based on the maximum-shear law to transform the axlal
stress-strain data to shear data.

Since equation (24) for short cylinders depends primarily upon the
secant modulus as does equation (10) or (17) for long cylinders, it
appears that equation (10) or (17) may be used as a reasonsble approxi-
mation of 17y for cylinders of moderate length.

Test Data

Stang, Remberg, and Back (ref. 19), Moore and Paul (ref. 20), and
Moore end Holt (ref. 15) have presented test data on the torsional failing
strength of long end moderste-length drewn circular tubes. In most cases
failure occurred as a result of inelastic buckling in the 'l:wo-lo'b_e mode.

Stang, Ramberg, and Back tested 2017-Th and chrome-molybdenum tubes
for which representative shear stress-strain curves were presented. In
this case, therefore, it was possible to correlate theory and experiment
on the basis of equation (17). Of the laerge mass of test data given in
reference 19, a relatively small amount was useful for correlation pur-
poses. These data are given in table 2 and were selected on the basls
that the tubes were long in the sense of equation (9) (clamped ends).
Furthermore, the yield stress of the 2017-Th tubes was approximetely
23 ksi and the failing stress was less than 26 ksi to correspond with
the glven shear stress-strain data. For the chrome-molybdenum tubes,
the corresponding values were 49 and 58 ksi, respectively. Many of +the
other test date were beyond the range of the given stress-strain data.

In computing the experimental values of 14, the torsional failing

stress was divided by the critical elastic shear stress of equation (8).
Since the shear stress-strain date were given, the theoretical values
of 1y were calculated by use of equations (17) and (6) for Poisson's

retio with GB/ G replacing Eg IE in the latter.

The theoretical and experimental values of 17y are shown in fig-

ure 2. It can be observed that good agreement is obtalined for the
2017-T4 data, whereas the agreement is not so good for the chrome-
molybdenum-tube data.
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Moore and Paul (ref. 20) tested 6051-T6 seamless tubes of moderate
length. Tension stress-stralin data are also given. The torsional falling
stresses are listed in table 3 together with the experimental value of 14

calculated by use of equation (22) for tubes of moderaste length. The
theoretical velues of 1g were determined by use of equations (10)

and (6), using the tension stress-strain data. Shown in figure 3 is a
comparison of the mng values based on the use of the octahedral- and

maximm-~shear laws to transform the axial stress-strain data. Better
correlation is obtained with the latter, although the test data are below
the theoretical values of 14. This may possibly reflect the relatively

large scatter among the test data or the fact that the value of 14 given
by equation (10) is spproximate for tubes of moderate length.

Relatively large scatter can alsq be observed for the 6061-T6
aluminum-alloy test data of Moore and Holt (ref. 15; also listed in
table 3 and shown in fig. 3). These tests were conducted on both long
tubes and tubes of moderate length and are so designated in table 3 and
figure 5. The theoretical velues of 1ng were computed from a typical

stress-strain curve for 6061-T6 aluminum slloy given in reference 16 and
having the same yield properties as listed in reference 15. In this
case, the test data again favor the use of the maximum-shear law to
transform the axial data with epproximately equal scatter of the test
points about the theoretical line.

DISCUSSION

In discussing the correlation between the theoretical plasticity-
reduction factors and the available test data, it is convenient to sum-
marize the results as shown in teble k4.

Compressive Buckling

For the limited amount of test dats on 2017-T4 and 6061-T6 aluminum-
alloy tubes in compression, it appears that the plasticity-reduction
factor given by equation (4) is in substantially good agreement with test
date. Considerasbly more weight must be placed on the 2017-Th date as
compared with the 6061-T6 data since compression stress-strain data were
given for the former, vwhereas such data for the latter were estimated
from other sources. Thus, the agreement obtained for the 2017-Tk4 data
can be interpreted as excellent support for the theoretical value of 1.

As indicated previously, the experimental values of 1, for the
test data were computed using equation (3) which is based on classical
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stabllity concepts. Since test dete,on elastic buckling of compressed
cyllinders generally fall consliderably below thils theoreticel value, it
appears fruitful to discuss the implications of the aspparent agreement
of test data on cylinders which buckle inelastically with equation (3)
after inelastic buckling effects have been accounted for by use of 1,.

The cylinders used for the inelastic tests were drawn seamless tubes
with R/'b values less than 50. Consequently, these tubes probably con-
tained very small geametrical imperfections and were relatively free of
reslidual stresses. By contrast, tests on elastic buckling were generally
conducted on cylinders fabricated from flat sheets with R/t values
ranging from 200 to 3,000. Many of these tests were conducted on cyl-
inders of very thin sheet stock and therefore the geametrical imperfec-
tions would be expected to be very much greater then those 1n drawn tubes.
Thus, it is probably safe to conclude that the initial imperfections for
the inelastic cylinders were considerebly less than those for the elastic
cylinders. Provided the plesticity-reduction factor 1s correct, the ini-
tial imperfections were apparently of such a smell magnitude for the
inelastic cylinders thet the buckling stress is adequately predicted by
classical small-deflection theory.

This apparent agreement with classical theory for inelastic cylin.
ders may have scme bearing on the currently held views concerning the
lack of agreement of test data on elastic cylinders with small-deflection
theory.

According to the energy criterion of buckling used by Tsien (ref. 21)
for perfect elastic cylinders in a rigld screw-powered testing machine
(the condition leading to the highest buckling stress)

Oep = 0.3TEt/R (25)

It is the contention of this theory that the small amount of energy nec-

essary to trigger the jump to large deflections is available in the vibra-
tions of the testing machine, for example.

Donnell end Wan (ref. 22) have maintained that the presence of geo-
metrical imperfections and residual stresses rounds off the sharp pesk
in the stress end~-shortening curve of large-deflection theory and there-
fore failure is observed at loads considerably below the classical wvalue.

It is essential to realize that the highest buckling stress of the
energy criterion is given by equation (25) and therefore this theory does
not admit the possible realization of & buckling stress as high as that
given by equation (3). On the other hand, as the imperfections become
very small, equation (3) is approached as a limit in Donnell's interpre-
tation. Since equation (3) was apparently confirmed by the test data
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shown in figure 1, for which the imperfections were probably very small,
it would appeaxr thet Donnell's inbterpretation is definitely favored over
the energy criterion in this case.

Torsional Buckling

Of the test data available to evaluate the theoretical plasticity-
reduction factor for torsional buckling given in figures 2 and 3 and
sumearized in table 4, it would appear thet considersble weight should
be placed on the 2017-Tk date. This is due to the fact that a wide range
of test data as well as shear stress-straln data was given. TFor the
chrome-molybdenum tubes only & small amount of test data could be used
because the yield stresses and stress-strain properties varied consider-
ably from those of the shear stress-strain curve given. Therefore, it
would appear that excellent confirmation of 15 was obtained for the

2017-Th4 data, whereas the chrome-molybdenum deta were too few and too
variable in stress-strain characteristics to permit any definite con-
clusions to be drawn for this material.

The 6051-T6 and 6061-T6 data of figure 3 are useful in providing a
means of checking the theoretical value of 175 utilizing the maximum-

shear and octahedral-~shear laws to transform the axial stress-strain
data to shear stress-strain data. Although the conclusions to he drawn
are handicapped by relatively wide scatter of test date and by the nature
of the stress-strain data available for correlation (table 4), it would
appear that the date are in better agreement with the use of the maximum-
shear lew than with that of the octahedrsl-shear law to transform the
axial date.

SUMMARY OF RESULTS

The following conclusions were derived from a theoretical and experi-
mental investigation of the compressive and torsional buckling of thin-
wall cylinders in the yleld region:

1. A general set of equilibrium differentlal equations for plastic
buckling of circular cylinders has been derived based on deformation
stress-strain relations and the no-strain-reversal buckling model. Fur-~
thermore, an attempt has been mede to remove a difficulty associated with
using the no-strain-reversal model in conjunction with classicel stability
concepts.

2. The plasticity-reduction factors for inelastic buckling of long
cylinders under compressive or torsional lqa.dings have been derived.
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It is shown that these factors are in satisfactory agreement with test

data when satisfactory compression and shear stress-straln data are
available.

3. Both the maximum-shear and octahedral-sheer plasticity laws were
used in transforming axial stress-strain data to shear stress-strain
data for torsional buckling of cylinders in conjunction with a theoreti-
cally derived plasticlity-reduction factor based on the octehedral-shear
law. In such cases, results obtained by use of the transformed shear
data based on the maximum-sheer iaw are in better agreement with test
data than those based on the use of the octahedral-shear law.

4, Compression test data on tubes which probably contained small
geometrical imperfections correlated very well with the critical stress
predicted by clessical small-deflection theory after the theoretical
correction for inelastic buckling had been incorporated. This correle-
tion is viewed as a factor favoring the imperfection interpretation

gbonnell) of tests on elastlic cylinders over the energy interpretation
Tsien).

Research Division, College of Enginéering,
New York University,
New York, N. Y., October 1k, 195k.
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APPENDIX A
PIASTICITY CONSIDERATIONS

Tn the following derivations, assumptions have been employed which
appear to have resulted in the best agreement between theory and test
deta on inelsstic buckling of flat plates with various geometrical bound-

ary conditions and types of loading.

A fundamental hypothesis of plasticlity theory is that the stress
intensity o; 1is & uniquely defined, single-valued function of the straln
intensity ei <for a given materisl when the stress intensity increases

(loading) and is elastic when it decreases (unloading). The definitions
of the stress and strain intensities theoretically can be chosen from a
manifold of rotationally invariant functions. Two such functions, the
meximum-shear and octshedral-shear laws, have been useful.

For the octahedral-shear law, the stress and strain intensities
can be defined as follows:

1
0y = ("xa + °y2 = Oxly + 5"2) fe (a1)

1/2

ey = -% €x® + ey + exey + 72/11-)] (a2)

With the assumption that the principal axes of stress and strain
colncide, the secant modulus can be defined as

Bg = 0y /ei (a3)

Furthermore, by use of deformetion-type stress-strain laws together with
the assumption of plastic isotropy and the idealizetion that Poisson's
ratio is equal to 1/2 for both the elastic and the pla.stic region, the
following simplified two-dimensional stress-strain laws are obtained:

ex = 5= [ox - (1/2)0y] ()
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&y = o[oy - (/)] - (a5)
7 = 3[Eg (6)

Inelastic-Buckling Considerstions

All of the foregoing assumptions form the basis for solution of
plasticity problems in general. For the specific problem of inelastic
buckling, it is necessary to make an additional assumption concerning
the stress distribution at the instant of buckling.

From the standpoint of classical stability theory, the equilibrium
differential equations are formulated on the basis that at the buckling
load an exchange of stable equilibrium configuration occurs between the
straight form and the slightly bent form. Since the load remsins con-
stant during this exchange, a strain reversal must occur on the convex
side, and, therefore, the buckling model leading to the reduced-modulus
concept for columns is correct theoretically.

Practical columns and plates invariebly contein initial imperfec-
tions and therefore axial loading and bending proceed simultaneocusly.
Since in the presence of relatively large axial compressive stresses
the bending stresses are generally small, no strain reversal would be
expected to occur and the incremental bending stresses in the inelastic
renge are glven by the tangent-modulus model. However, the bent form
is the only stable configuration in this case and therefore use of equi-
librium equetions based on perfect columns, plates, or shells is clearly
unjustified.

Partielly to remove this difficulty, Stowell has assumed that the
straight form of the plate or column is stable until buckling occurs
(ref. 5). A% buckling, infinitesimal bending is assumed to proceed
simultaneously with a corresponding infinitesimsl increase in axisl
loading so that the plate is not subjected to & strain reversal and
remains inelastic. Again this model poses an essential difficulty since
classical stability theory is based on the assumption that the axial
loading remains constant during the buckling process.

In appendix B, in which the equilibrium equations are considered,
an attempt is made to remove this difficulty by showing that the infin-
itesimal increase in load associated with the no-strain-reversal model
contributes higher order terms then those generally considered in the
equilibrium equation. This is by virtue of the fact that the axial loads
are multiplied by first or second derivatives of the displacements and
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therefore products of the incremental load increase and these deriva-
tives result in second-order terms.

Incrementel Forces and Moments

When buckling occurs, the displacements vary slightly from their
velues before buckling. The resulting strain variations arise partly
from varistions of middle-surface strains and partly because of bending
strains. These resulting variations of stresses have been considered
by Ilyushin (ref. 3) and Stowell (ref. 5). Using the assumption that
no part of the plate is unloaded, Stowell has derived the variations
of the moments during the buckling process. The variations of the middle-
surface forces can be derived directly from this work.

When the veristions of the forces and moments are denoted by
primes ('), the following relations apply to fully plastic plates during
buckling:

Ne* = Bfager + (1/2)A10e5 - (1/2)A15¢3)] (a7)
Ny’ = BfAzen + (1/2)Apey - (1/2)8z5¢5] (48)
Ney' = gE3e3 - (1/2)Az3€; - (1/2)A32e2] © (a9)
W' = Dard + (1/2Mp% - (L/2)ag5% (a10)
My' = -DEl.zxe + (1/2)Ap %) - (1/2)A25X5] (A1)
My = =255 - (/2513 - (1/2)52%) (a12)

In equations (A7) to (Al2), & and ep are middle-surface normal
strain veriations and ez is the middle-surface shear strain variation;
X and X% are the changes in curvature and x5 is the change in
twist. Furthermore, the plasticity coefficients are defined as follows:



NACA TN 3726 21

Ay =1- (a.o’xz/ll-) -
Ap=1 - (a.uya/ll-) S (A13)
A3 =1 - ar?
Apy =Ajp =1 - (or.o’xoy/z)
A31 = A13 = QOyT
A3p = Agz = agyT
vwhere
@ = (3fo2) 1 - (mefs)
The exial rigidity is
‘ B = UEgt[3 (a1k)
The bending rigidity is
D = B;t9 (a15)

In the elastic region, o« = O and, therefore, A; =A, = A3 =
Ajp =1 and A13 = A23 = 0. By replacing the definitions of equa-
tions (Al4) and (A15) which are for a fully plastic plate by
B = Et/(l - vez) and D = Et5/12(1 - ve?-’), respectively, and replacing
the coefficient (1/2) by v,, equations (A7) to (Al2) reduce to the
famillar relations for the elastic plate.
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APPENDIX B

EQUILIBRTIUM CONSIDERATTONS

Elastic Buckling

Donnell's equations (refs. 13 and 18) for elastic buckling of thin-
wall circuler cylinders have been used with a considersble degree of
success in buckling problems. Therefore, in this investigation of ine-
lastic buckling of long circular cylinders under compressive and torsional
loads, an extension of Donnell's equations is considered.

The middle-surface straln veriations and curvature changes that
occur during buckling of a circular cylinder are related to the dis-
placements as follows:

El = au/ax
€p = (a’V'/R 89) + (W/R)
_1/du ov
€5 = '2'(3_33 ¥ a—x>
- (B1)
¥ =d%fax?

Xo = Bzw/ R206°

%5 = %R dx 30

Ly

The following simplified equilibrium equations as derived by Donnell
(ref. 13) neglect certain terms which are of small magnitude when the
circular cross section of the cylinder is distorted during buckling. In
cases in which the cross section retains its circular shepe during buck-
ling the neglected texrms ere generally of some importance.

oN,' AN

- Xy

Z‘.Fx-ax+Rae =0 (B2)
dNy' ANy

SF, =
® "R o0 ox
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Myt M, Ny
F.:].i‘z=-32Mx - N _ . 2My Yy + Ny +2ny—a-21—+
dx2 Rox 30 22 R = R ox 08
P
+p=0 (Bh4)
W B2 :

In equation (BIL), Nx, Nxy, Ny, and p ere prescribed external
loadings, with Nx and Ny positive in compression. The terms con-
taining a prime are the variations associated with buckling.

Inelastic Buckling

In appendix A, it was indicated that use of the no-strain-reversal
model for inelastic buckling poses the difficulty that the external load
must increase slightly during the buckling process. This 1s at variance
with classical stebility concepts which require the external loed to
remein constant during buckling. Therefore, some Justification is nec-
essaxry in order to use equilibrium equetions baged on constant externsal
loads for inelastic buckling problems in which the external load must
increase slightly. An attempt has been made to clarify this point which
has been overlooked by previous investigators.

It is assumed that, in the inelsstic-buckling process, the external
loads increase slightly. Denoting this increment by &N, the external
loads are increased as follows: Ny + 8N,, ny + any, Ny + Bl‘Iy, and

P + Op. The terms containing a prime in equations (B2) to (B4) are the
middle-surface force and bending-moment varistions arising from bending
and twisting of the plate at buckling. Therefore, the slight increase
in external load represented by &N can bave only & negligible influence
upon the primed terms in equations (B2) to (BY).

In equation (Bh), the external loads N,, Nyy> Ny, and p appear.
If these loads are replaced by Nx + 8Ny, . . ., p + 8p, then terms

such as SNx(Baw/ ax2) and 8p appear which are clearly of higher order

than those terms appearing in equation (BlY) and can be neglected. Thus,
1t appears permissible to conclude that the slight increase in load
required for the plate to remain inelastic during buckling is compatible
with the use of equilibrium equations based on classical stability
concepts. .
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Equilibrium Equations

By use of the force and moment variations (egs. (A7) to (A12)) and
the strain-displacement relstions (egs. (BL)) the equilibrium relations
(egs. (B2) to (BY4)) can be written in terms of the displacements u, v,
and w and their derivatives:

%n Mz P Az 32 A1z ¥y (Ala + 12)
R ox 00

M s - Roxd ' h %2 k2
A23 aav LMo v B3 '
L R202 2 Rox kR0 ° (5)
e 2x tm B M My, ( +ﬁ3_)
2 22302 2 Rox 0 ka2 k 2 \2  BJRoxoe
Aoz % dw_ B w _ (86)

25 o,
L 32392+ 2F% F Rox

bl*w Bl"w al‘w
Diay 9% - pqz —S ¥ __ - S
[l R axdoo + (b2 d) s ) 11231:2392 25 BPox 203

Ap

al"w]_l_E(Ambu Aoz 3u Aoz dv >v w)
m

gkl Rz & F Roe -k x 2R T P2R)T

%y %W 3%

Nxax2+ mmm'l'my:&ea > +p=0 , (B7)

Equations (B5) to (B7) constitute a basic set of equilibrium dif-
ferential equations for plastic buckling of circulsr cylinders. In
the elastic case, Al-Aa—A3-A12-l and. Ayz = A23—0 and, by

properly accounting for Poisson's ratio, equations (B5) to (BT) reduce
to the following:



Q
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a2u 1- v 32u+l+ve 320
a2 2 R2eP 2 R ox o8

Ve ow _
TR0 (88)

% 1-v an 1+ve 32 S

ot 2 32 Z R ® i (B9)
Qu, OV . W % 3 aaw
Dv)+w+ ( = Be+—)+Nx x2+2nyRaxbe+N 32392 =0
(10}

By suitable manipulation of equations (B8) to (B10), the above set
of equations can be reduced to & single equation in deflection w known
a8 Donnell's equation:

b :
o+ ﬁt gx‘* Vh(Nx gng t Ay g gzacwae + Ny 2::2 P) =0 (em)
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APPENDIX C
AXTAL COMPRESSIVE BUCKLING OF A LONG CYLINDER

For a long circular cylinder subjected to axial compression,
oy =7 = O. The value of the term o which appears in equations (Al3)

is given by equation (Al) as discussed in reference 5 and, therefore,
for this case 03 = oy. Thus, the plasticity coefficients reduce to

+

-
=
o |

A =
A2=A3=A12=l

Az = Aoz =0

Consequently, equilibrium equations (B5) to (B'() reduce to the following
equations:

L w1 P .3 v 1 dw

M st T FR OO T 2RO (c2)
v 13,3 d*u o
32392+Eax2+ERaxae Raae"o (c3)

S S M \ . BfL 3u _
D@laxu“aRaaxaaea*‘Ruaeu)*ﬁ(m*nae*i“‘x%‘” (e

Compressive tests of cylinders which buckle plastically indicate
that an axisymmetric form of buckling often occurs. Therefore, if this
mode of instability is assumed, the displacements are independent of the
6 coordinate and all derivatives containing © vanish. Thus, equa-
tions (C2) to (CY) reduce to the following forms:
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Pu . 1 dw
A ax2+-2-Rax_o (c5)
32
— =0 (c6)
dx2
L 2
Ow , BfLou , w oW _
DAlgE’l'i(E&'l‘ﬁ)'l'Nxé;—é—o (C7)

By performing the operation B/Bx on equation (C7) and then using equa-
tion (C5), a single equilibrium equation in w is obtained:

35

&
my & 32( A+ P oo (c8)

A solution to equation (C8) can be written in the following form:

W = Wy sin(ax/\) , (c9)

where

= l/m

Upon substituting the appropriate derivatives of equation (C9) into
equation (C8) and using the definitions of D, B, and A; given by
equations (A15), (Alk4), and (Cl), respectively, and the relation
Ny = 0opt, the following nontrivial solution is obtained:

7‘— (c10)
Eg/2 2(1 zEt> 72
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The cylinder is considered to be long, so that many waves form
along the length and therefore o, can be considered as a comtinuous

function of A. By minimizing equation (C10) with respect to the wave
length,

1/2
= 2 B t Et) (C:L-L)

“cr‘5 BR-:E-:;

The corresponding half wave length of the buckles

5 B 1/2 - 1/2 - 1/%
=xlt 28 117 =
A= ,:(4 *+ 5 Es) (3 ) (Et> (c12)
For the elastic case , ‘the corresponding solutions are:
-1/2 % :
Oop = [3(1 - vea)] Ez (c13)
-1/4
A = n(gt)/2 [12(1 - vea)] (c1k)

By comparing the coefficients which appear in equations (Cll)
and (C13), it cen be observed that the coefficient in equation (Cll)
can be obtained by substituting a value of 1/2 for vy 1in equation (c13).

Thus, the following reletions can be written which are exact in the
elastic and fully plastic ranges and result in an excellent degree of
approximation in the lnelastic range:

Ocr = [3(1 - ”2)]ﬁl/aE:s(F'l:./Es)l/2 % (c15)

1/4 ]-1/l+

(Rt)l/2[12( - v2) (c16)
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APPENDIX D
TORSIONAL BUCKLING OF A LONG CYLINDER

For a long circular cylinder subJected to torsional moments at the
ends, 0Oy = Oy = O. The value of o; which appears in equations (a13)

is given by equation (Al). For this case,
1l/2
o = (3% (p1)
The plasticity coefficlents reduce to

A1=A2=A12=l

A13=A23=0

(D2)

Az = Et/EB (D3)

Consequently, the equilibrium equations (egs. (B5) to (B7)) reduce to
the following expressions:

2 Az % (2+83) &y 1
e T et ¥ Rx®TzR& O (k)
Pv AR (2+83) R v _
_R2362+T3x2+ 5 Roxoe TR (25)

A Sy y |, Bfidu, ¥ ,w
D[ax4+(l+A5)Raax2592+Ruaeu TR2x"Roe R)T

%

oy R ° (26)
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By multiplying equation (D6) by R2/B and letting

D _ %2
Ry
f (o7)
¢=N:gr= Ter
B (4/3)E

Equation (D6) can be reduced to the more convenient form:

i ot 2 v Mw|.Rdu. o 2 _
B8R ale+(:L+A3)R ax2ae2+aeu+2ax+ae+w+2@axae'° (D8)

Following the method of solution for torsional elastic buckling of

a cylinder as given by Timoshenko- (ref. 1) » the following reletions are
used for the displacements:
\

u = Upn cos(?‘n-%‘- - ne)

\ 4

(D9)

Vv = Vgn cos(% - ne)

W = ¥Wyn sin(% - ne)

The angle which the helical buckle mekes with the original generator of
the cylinder is given by

.

tan o = A\/n (p10)

Since the cylinder is assumed 4o be long, the boundary conditions at the
ends are relatively unimportent and, therefore, equations (D9) can be
used although they do not satisfy the usual boundary conditions of simple
support or clamping.
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The substitution of the appropriste derivatives of equations (D9)

into equations (D%), (D5), and (D8) results in the following matrix
equations

A 2 + A
_()\2 ] n2> g__-'-_3) An i Umn
I 4 2
2+ A A.
( 3)7\n - n2 + 2 7\2) -n Vgn| = O (D10)
y 4
—E. + 2pM\n + B‘)\l‘ +
%- A -n Yon
28(1 + A3)7\2n2 + BnlEl

A nontrivial solution requires the determinent to venlish independently.
Upon expanding the determinant, the following result is obtained:

Az ) 4 2 4 2 u]
T?\ +ﬂ[n + (1+A3)7\2n +7\_A3n + (3-A5)7\2n + AzN

2hn|Azn* + (- hs) 7\2_n2 + A57\“]

(D11)

As in the elastic case, very small values of A yield the smallest
value of @. Furthermore, by assuming B to be small, equation (p11)
simplifies to :

_ (34 + g
==

P (p12)

Note thet the term A3 cancels out of equation (D12) under these

assumptions and, therefore, the solution for ¢ is independent of the
value of Az given by equation (p3).

For a long cylinder a minimm value of ¢ 1s obtalned for n =2
which corresponds to the famillier two-lobe buckling. Therefore, equa-
tion (D12) becomes :

4
_ (3/8)\" + 2568
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By differentiating with respect to A, =

BN
- %(31-,2/122)1'/lL (D14)

Upon substituting equation (D1k4) into equation (D13) and simplifying,

? = %(%)1/255/ * (n15)

By use of equations (DT)

ter = 2578, (8/8)/2

- 0.5388, (t/8)>/ (16)

The corresponding elastic solution can be obtained by substituting
1- Ve2 for the coefficient 3/4 in equations (D13) and (DT7):

Ter = [(%)(6)1/2]-1(1 - Vee')-B/hE(t/RP/ 2

3/ :
- 0.272(1 - ve2) 3/ E(t/R)3/2 _ (D17)

' ‘ 1/2
A= [2(1 - vea)'l/ 21;/11] (D18)
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By identifying the coefficient U4/3 which appears in equations (D13)
-1
and (D7) as the limiting value of (l - v2) with v = 1/2, it is

then possible to combine equation (D16) with (D17) and equation (D1k)
with (D18):

Ter = 0.272(1 - va)-j/uEs(t/RP/ 2 (D19)

_ 1/2
A = [2(1 - va)-l/a'b/R] (D20)

Equations (D19) and (D20) are exact for the elastic and plastic ranges
and constitute excellent aspproximetions in the inelastic range.
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TABLE 1

NACA TN 3726

TEST DATA ON COMPFRESSIVE STRENGTH OF TUBES

(a) 2017-T4 aluminum-alloy data of reference 14

a/t op, ksi Ne

28.4 4.8 0.330
97.9 41.9 .327
79.2 5.2 .288
8.4 k5.6 .287
8.1 43.6 .273
63.7 47.0 241
63.7 h1.h4 L2h2
62.2 46.3 .230
61.5 k6.0 .226
61.5 46.2 .228
61.4 k6.0 .226

(b) 6061-T6 sluminum-alloy dsta of reference 15

d, in.| %, in. | op, ksi Mo
1.32 | 0.016 40.8 0.281
.023 39.0 187
.033 k.9 140
.066 k6.3 OTT
132 52.7 .ol
2.00 | 0.025 38.6 0.257
.033 40.8 .206
.050 43.6 146
.100 43.6 073
.200 53%.3 Olh
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TABLE 2
TEST DATA ON TORSIONAL STRENGTH OF LONG TUBES FROM REFERENCE 19

(a) 2017-T4 aluminum-alloy tubes

1/a +/d Tp, ksi g

19.9 | 0.02235 23.1 0.792
19.9 .02516 23.4 .698
60.0 .02848 2.2 .580
19.9 03231 2.9 491
59.8 .03242 26.0 513
39.9 .02195 22.8 .8%0
13.3 .02903 25.1 .596
39.9 .02896 2.1 572
13.3 .03273 26.1h .512
40.0 .03312 26.1 .506
30.0 .03350 25.7 J91

(b) Chrome-molybdenum tubes

1/d t/d | Tyie1qs kel| Tp, ksi | g
25.3 | 0.04055 148.6 50.6 |0.262
25.3 | .okoko k7.9 50.4 .261
79.9 | .0k020 k9.5 51.1 .26k
30.1| .02330 h7.2 43.8 530
12.6 | .03486 49.8 L7.h .309
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TABLE 3

TEST DATA ON TORSIONAL STRENGTH OF TUBES

(a) 6051-T6 aluminum-alloy tubes of moderate length from reference 20

aft =71 a/t = 10k a/t = 139

1/da

/ Tp, ksi Mg |Te, kel Mg |Tp, ksl Mg
1 21.6 |o.\2 18.9 | 0.525 18.4 | 0.728
1 21.9 418 19.5 .5h2 18.% .728
2 | 2.k | .58} 18.8 | .T40| 1T7.0 .950
2 21.9 594 19.7 .T65 16.5 .923
L 21.2 .810 17.7 .98k 12.6 | 1.00
h 2.3 81k 18.6 | 1.03 12.% .982
8 20.1 |1.09 13.9 | 1.09 9.2 | 1.035
8 19.2 |1.0k 4.0 | 1.10 9.2 { 1.035
16 13.5 [1.03 9.8 |1.09 6.5 | 1.02
16 12.5 957 9.6 |1.08 6.5 | 1.02

(b) 6061-T6 aluninum-alloy tubes from reference 15

Length d/t 7'/d- Tp, ksi Mg
(a) ‘
M 80.6 5.7 19.1 0.816
M 80.6 |17.0 10.4 813
L 80.6 | 27.6 9.3 .T95
M 80.6 |11.5 15.% - .987
M 58.8 5.7 18.6 .543
L 58.8 |17.0 17.4 .927
L 58.8 | 27.6 15.2 .810
M 39.h 5.7 22.7 103
L 39.4 [17.0 22.3% .648
L 39.4 |27.6 22.0 640
M 60.6 |11.5 20.2 .928
2M, moderate length; I, long.



Stresa-atralin

Material Loeding Figure 1 dnta Remarks
2017-Th Coampression 1 Ba. (4) Compression |Excellent agreement;
limited test data
6061-T6 Compression 1 | Eq. (¥) & Oy Fair agreement; limited
test data
20LT7-Th Torsion 2 | Bq. (17) | Sheer Excellent agreement;
wlde range of test data
Chrome- Torsion 2 | Bq. (17)| shear Theory High; limited test
molybdenum dete
6051-T6 Torsion 3 | Bq. (10)]| Tension Fair egreement; moderate
length tubes
6061-T6 Torsion 3 | Bq. (10)] & gy Good agreement; moderate

and long tubes

8qigngile and compressive yleld stress given.

ref. 16 for these yleld values.

Stress-strain data obtained from
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Figure 1.- Plasticity-reduction factors for compressive buckling of
aluminum-alloy tubes.
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Figure 2.- Plasticity-reduction factors for torsional buckling of long =
=

tubes.
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Figure 3.- Plasticity-reduction factors for torsional buckling of tubes.

5, 3
1 = (1 - v&/1 - v2)"" (Bg/E).
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